
GliderThrow𝑀𝑒𝑡𝑒𝑟
Release V1.2.0

Nov 04, 2022

Contents

1 Get Started 3
1.1 Introduction . 3
1.2 Functional requirement . 4
1.3 What do you need . 4
1.4 First stage of prototyping : Basic connection diagram . 5
1.5 Second stage of prototyping . 6

2 Software Design 7
2.1 Logical design . 7
2.2 Files organization . 10
2.3 Server software architecture . 10
2.4 Client software architecture . 13
2.5 UX Design . 14

3 Hardware Design 19
3.1 Power supply and filtering . 21
3.2 Lipo charging . 22
3.3 USB to serial converter + ESD protection . 22
3.4 MPU6050 . 23
3.5 ESP-WROOM-32D & Autoreset . 24
3.6 Reset circuit . 25
3.7 Boot circuit . 26
3.8 Adressable LED . 27
3.9 PCB routing . 28
3.10 Bill Of Material, Eagle Files & Gerber . 29

4 System Build 31
4.1 What do you need . 31
4.2 How to build assemble one board . 32
4.3 How to use the devices . 40

5 Indices and tables 41

i

ii

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

This is the documentation for the GliderThrow_Meter’s project (GliderThrow_Meter).

GliderThrow is primary design for setting the control surface of a RC glider but you will find that it can be used
on most every airplane and for a variety of applications as Measuring a dihedral angle of a wing, Measuring Model
Airplane Incidence angle , etc.

GliderThrow meter is made up of two device, each using one ESP32 SOC and one MPU 6050 6 doffs component.

Each device can measure the deflections in degrees / millimeters with a resolution of 0.1 degrees and can measure the
differential when working together with a second unit since GliderThrow is a system that comprises two sensors, one
for each wing or surface control pair of your airplane.

Using a dual system simplifies a lot the throw setting of your model by having a direct view of “equivalent” control
surfaces at the same time (left and right aileron, or flap).

As the first device embedded a small http server, the data can be viewed through any web browser on a smartphone,
PC or MAC, using Windows, Linux, Android or iOS.

UI is built using bootstrap and jquery, and all the files needed are embedded in the .rodata segment of the first device.

The project is made up of two parts, the server (Esp_mad_Server directory) and the client (Esp_mad_Client directory).

Two extras libraries are used in the project : i2clibdev and MPU6050 from jrowberg.

These libraries are in the extra_components directory of the project.

This project is build using the ESP-IDF 4.0.3 CMake Build System. Please refer to the espressif documentation for
more information to setup an ESP-IDF environnement.

Note: Take care to build the project with an ESP-IDF framework < v4.1 (tcp_adaptor & event_loop APIs have
changed since v4.1).

I highly recommend you to use the Vscode IDE and the espressif ESP-IDF Vscode Extension to build the project.

All my thanks to the members of the Electrolab of Nanterre who assisted me during the realization of this project and
for the access to the manufacturing and tests tools of this miraculous Hackerspace.

This project is published under the MIT license.

Enjoy !

Get Started Software Design Hardware Design System Build

Contents 1

https://github.com/adesandr/GliderThrow_Meter
https://www.espressif.com/en/products/hardware/esp32/overview
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
https://github.com/jrowberg/i2cdevlib
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=espressif.esp-idf-extension
https://www.electrolab.fr/
https://github.com/adesandr/GliderThrow_Meter/blob/master/LICENCE
get-started/index.html
software-design/index.html
hardware-design/index.html
system-build/index.html
get-started/index.html
software-design/index.html
hardware-design/index.html
system-build/index.html

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

2 Contents

CHAPTER 1

Get Started

The objective of this project is to design a board based on an ESP-WROOM-32 module from the company Espressif
and an MPU6050 component from the company Invensense.

The design process is based on 3 steps:

1. Prototyping of the concept from demoboards

2. Software development based on the prototype

3. Board design (schematic and routing).

The Get started section presents the first part of the process, i.e. the prototyping phase.

1.1 Introduction

The principle of the project is based on the use of two (or more) completely identical boards that communicate using
Wifi, on an ad’hoc network (define as ESP_MAD network).

One of the board (named “Server”) is initialized in Access Point (AP) mode. The other boards initialize in Station
mode (STA) (named “Client(s)”).

The “Server” board and the “Client” board(s) use similar software, but slightly different because of this specificity of
Wifi configuration.

The “Server” board integrates a web server, which allows any web browser to connect to the “Server” board and to
navigate on the HTML page (so, connection are possible with all the devices equipped with a a web browser like a
PC, a Mac, a Tablet or a Smartphone under Windows, Linux, Android or IOS).

The HTML pages are developed using the Bootstrap framework for the layout and JQuery for the Javascript calls
embedded in the pages.

3

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

1.2 Functional requirement

The main features requirement from the system are the following:

• Measurement of control surface deflection in either Angle or mm,

• At least two LEDs :

• One to indicate that the circuit is in operation “during calibration of the MPU6050” or in measurement
mode after calibration,

• the other to indicate that the battery is charging.

• Recording and display of maximum and minimum deflection (in mm),

• Minimum management of a “Client” board in order to adjust two control surfaces at the same time and
ensure “identical” deflection on both control surfaces (aileron, flap, elevator, etc),

• Possibility to change the control surface chord (due to the use of the MPU6050 which allows to recover
angles, this feature is mandatory),

• Possibility to easily change the UI of the web interface,

• Battery powered with a battery life time of 3h in normal operation,

• In order to be able to be installed on a small control surface, a casing with a maximum form factor of 41
mm x 41 mm x 31 mm is targeted,

• The design of a storage box for both devices

• The design of the casing must incorporate :

• A USB interface for reprogramming the ESP-WROOM-32 module and recharging the battery,

• An on-off button allowing to recharge the battery without powering the rest of the circuit.

In must-have, it will eventually be possible to manage up to 5 “Client” boards at the same time in order to be able to
adjust the 6 control surfaces of an F3F glider.

Note: To date, the software only takes into account one client board.

1.3 What do you need

During the prototyping phase, we will use some breadboards, a development board integrating an ESP-WROOM-32
module, a development board integrating an MPU6050, as well as some prototyping wires.

These components can be easily found on the internet (Bandgood, Alliexpress, etc.), for a few euros.

Breadboard Lolin32 demoboard MPU6050 de-
moboard

Prototyping Wires

4 Chapter 1. Get Started

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

Several demonstration boards based on ESP-WROOM-32 can be used

I personally used the following boards without any problem.

Wemos Lolin 32 Wemos Lolin 32 lite Wemos clone

The last board in this table has a Wemos marking, but does not appear to come from the company of the same name.
However, it works very well and is a little smaller than the two Lolin 32 Wemos (But this board, unlike the Lolin cards,
has no battery connector and therefore no charging circuit). You can easily find this board by doing a search on the net
of the type “compact ESP32 board”.

Warning: On some ESP32 boards, in particular the Wemos clone, it is essential to switch the card to “boot” mode
during the software loading operation. These boards have generally two buttons, an “EN” button which is actually
the Reset button, and a “Boot” button which allows you to switch the board to “Boot” mode when you launch an
“idf.py flash” command.

1.4 First stage of prototyping : Basic connection diagram

I used this basic setup to develop the first version of the code, starting with the code for the “Server” board, then the
code for the “Client” board. If you want to test it, you’ll have to use two “big” breadboards (one for the “Serveur”, the
other for the “Client) or 4 small ones (two for the “Serveur” and two for the “Client”).

The ESP32 demoboard is easily connected to the MPU6050 board using I2C.

So,

Lolin 32 MPU6050
pin 21-> pin SDA
pin 22-> pin SCL
pin 5V-> pin VCC
pin GND-> pin GND

Note: The ESP32 allows you to change the assignments of the I2C pins. To test this feature, I used different
assignments on my three demoboards. These mappings are integrated in the esp_mad.h file. The figure above shows
the connection diagram used with the Lolin 32 demoboard.

1.4. First stage of prototyping : Basic connection diagram 5

https://github.com/adesandr/GliderThrow_Meter/blob/master/Includes/Esp_mad.h

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

After completing this assembly, you must download the file esp-mad-server.bin obtained after compilation into your
ESP32 demo card.

The procedure for using the UI is as follows:

1. Leave the breadboard flat,

2. Connect the “Server” card via its USB port,

3. If your board is equipped with an embedded led, this led will blink very quickly to indicate that the system
is in calibration phase of the MPU6050 (leave the breadboard flat during this phase). After a few seconds,
the LED will switch to a slower flashing mode to indicate that the MPU6050 has completed its calibration,

4. Connect your PC or mobile phone to the Wifi network of SSID “ESP_MAD”,

5. Launch your internet browser,

6. Type in the URL bar of your browser “http://192.168.1.1”.

7. The main page of the UI of the GliderThrow_Meter project will appear,

8. If you move the breadboard on which the MPU6050 is connected, the deflection values (up and down) will
be displayed.

1.5 Second stage of prototyping

After this first step, I integrated on a small PCB, a Lolin32 Lite demoboard, an MPU6050 demoboard and a 1A 5V
Micro USB Module Charger Module Board with Protection (ref. TP4056).

The result is encouraging and works perfectly, but the board has a form factor of 55 mm x 55 m (i.e. a casing close to
60 mm side) which is off target compared to the initial requirement.

Finally, I tried to integrate the “clone Wemos” demoboard which is more compact by stacking a PCB that integrates
the MPU6050 board and the TP4056 board. We arrive at a form factor (excluding the casing) of 38mm x 38mm x
45mm, which is close to the target, but not totally satisfactory in terms of integration and usability.

Following these two tests, I came to the conclusion that the integration of off-the-shelf boards would inevitably lead
to a form factor that not stick the requirement and a low comfort of implementation.

However, this second prototyping stage enabled me to target the components needed for the integration of the boards,
And I decided to design a new PCB integrating all of the components. So go first to the next chapter for a description
of the software.

6 Chapter 1. Get Started

http://192.168.1.1

CHAPTER 2

Software Design

2.1 Logical design

The following figure shows the overall logical architecture of the system composed of a server and a client.

7

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

The following sequence diagram shows the global exchanges between the various components of the system.

8 Chapter 2. Software Design

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

2.1. Logical design 9

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

2.2 Files organization

The project files are organized as follows:

• docs : contains all the documentation related with the project. Documentation of the project is generated using
Sphinx (a python documentation generator)

• Esp-esp_mad_client : contains all the code for the Client part,

• Esp_mad_Server : contains all the code for the Server part,

• extra_components : contains the libraries used in the project and two components share between the Server and
the Client (esp_mad_task_measure and esp_mad_task_vBattery),

• Includes : contains Esp_mad.h for the globals define used in the code and Esp_mad_Globals_Variables.h for the
declaration of the globals variables used,

• buildAll.sh : is a little script used to clean or build all the project. The result is stored in the resultBuild.txt,

• README.md is the presentation of the project used by github and LICENCE is a MIT licence.

The docs directory contains also the bom, the datasheets for the main chips used in the project, the stl files to build the
casing and the box, the eagle files and the gerber files.

2.3 Server software architecture

The “Server” software code is made up of three files:

• esp_mad.cpp: this is the launch file which will create three FreeRtos tasks

• the “measure” task

• the “http-server” task

• the “task_vBattery”

• esp_mad_task_http_server.c: it is the file which contains the code of the task “http-server”

• esp_mad_task_measure.cpp: it is the file which contains the code of the task “measure”.

• esp_mad_task_vBattery.c : it is the file with contains the code of the task “task_vBattery”

2.3.1 The http-server task

A web server is a software component that listens for incoming HTTP requests from web browsers. Upon receiving a
request, the web server sends a response. This may be the return of an HTML document to be displayed in a browser

10 Chapter 2. Software Design

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

or data that forms a response to a service call. An HTTP request can also include data to be sent to the ESP32 for
processing. There are many implementations of Web servers that can run in an ESP32 environment.

The Espressif (ESP-IDF) framework provides an API, the HTTP Server component, for implementing a lightweight
Web server on ESP32. The two basic API calls are:

• httpd_start(): creates an HTTP server instance, allocates resources to it based on the specified configuration, and
generates a handle to the server instance. The server will have a listening socket (TCP) for HTTP traffic. The task
priority and stack size are configurable when creating the server instance by passing the httpd_config_t structure
to httpd_start(). TCP traffic is parsed as HTTP requests and, depending on the requested URI, registered handlers
will be called to return HTTP response packets.

• httpd_stop(): stops the server with the provided handle and releases the associated resources. This is a blocking
function that first signals a stop to the server task, and then waits for the task to finish. Upon termination, the
task closes all open connections, deletes registered URI handlers, and resets all session context data to empty.

To process HTTP requests sent to the server, we will need to register URI handlers with :

• httpd_register_uri_handler(): registers a URI handler by passing an httpd_uri_t structure object that has mem-
bers including the IR name, method type (e.g. HTTPD_GET / HTTPD_POST / HTTPD_PUT etc . . .), a function
pointer of type esp_err_t * handler (httpd_req_t * req) and user_ctx pointer to the context data.

The http-server task starts by launching a DHCP server, then initializes the board in AP mode by associating the SSID
defined in the esp_map.h file.

The address 198.168.1.1 is assigned to the Wifi AP as defined when the DHCP server is launched.

During the initialization of the Wifi in AP mode, an event_group is created to receive the various events that can be received by the Wifi stack.

• When the SYSTEM_EVENT_AP_START event is received, the web server is launched using the httpd
function library. When the server is launched, the various URLs on which the server is likely to react are
recorded and for each URL a callback function is associated.

• When the event SYSTEM_EVENT_AP_STACONNECTED is received, the corresponding bit is recorded in
the event_group.

• On receipt of the SYSTEM_EVENT_AP_STADISCONNECTED event, the corresponding bit is recorded in
the event group.

• On receipt of the SYSTEM_EVENT_AP_STOP event, the web server is stopped and the associated re-
sources are released.

Note: The URL “/”, which corresponds to the reception of an HTTP GET at the address 192.168.1.1, i.e. the main
page of the site (esp.html), triggers the loading of the elements embedded in the page, which are bootstrap.min.css,
bootstrap.min.js and jquery-3.1.1.min.js, by as many HTTP GET requests as required by the client browser.

All these elements, as well as the esp.html page, are embedded in the .rodata segment of the ESP32 memory (using
the EMBED_FILES directive in the project’s CMakeList.txt file).

Each element contains in the .rodata segment is then referenced in the code using the following two directives :

extern const uint8_t esp_html_start[] asm("_binary_esp_html_start");
extern const uint8_t esp_html_end[] asm("_binary_esp_html_end");

Note: It is also possible to perform the same operations using a SPI Flash File System (SPIFFS), but I have not tested
this solution. For a Web server using more than one HTML page, this method is probably more interesting than the
method consisting in embedding the pages in the .rodata segment.

2.3. Server software architecture 11

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

Data calculated by the “Measure” task (angle and travel) are retrieved by the http_server task from memory, these two
variables being defined as global variables. These two values are updated by the “Measure” task every 10 ms.

The deflection angle information measured by the “Client” board is received at a frequency of 900 ms by an HTTP
POST request. On receipt of the request, the deflection value in mm is calculated according to the control surface
chord.

When the chord is changed from a web browser, an HTTP POST request is received and the chordControlSurface
global variable is changed.

When the user wants to reset the Maximum(s) up and down on the travel tab, an HTTP POST request is received and
the values are set to 0.

2.3.2 The “measure” task

The task “measure” performs the following functions :

• initialization of the I2C bus,

• calibration of the MPU6050 component,

• Then periodically:

• Reading of the accelerometer and gyroscope values on the axes (x, y, z),

• Calculation of the angle in degrees based on the previous values.

Note: the task “measure” is identical for the “Server” board and the “Client” board. The only difference is that in the
case of the “Server” board, the deflection value in mm is calculated periodically by the “measure” task, whereas for
the “Client” board, the value of the angle is transmitted to the “Server” board using an HTTP POST request and it is
the “Server” board that performs the calculation of the deflection in mm.

Complementary filter is used to combine accelero and gyro data. see complementary filter for more information.

Basically complementary filter avoid used of kallman filter, quiet difficult to implement in small platform as an ESP32.
Gyro are used for fast motion as accelero are used for slow motion.

Note: The deflection value in mm is calculated as a function of the angle alpha by the following formula : X = 2*
sin(alpha/2) * L.

12 Chapter 2. Software Design

http://www.pieter-jan.com/node/11

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

2.3.3 The “task_vBattery” task

The task “vBattery” compute periodically (each 30s per default) the measurement of the voltage of the battery.

The battery voltage is connected to the IO35 pin of the ESP-WROOM-32. This pin is the chanel 7 of the ADC1.

A bridge resistor divider with two resistors of 100 KOhm is used to decreased the voltage from 4.2 V to 2.1 V. So the
attenuation of the ADC is set to 11 dB.

2.4 Client software architecture

The “Client” software code is made up of three files:

• esp_mad_client.cpp: this is the launch file which will create three FreeRtos tasks

• the “measure” task

• the “http-client” task

• the “task_vBattery”

• esp_mad_task_http_client.c: it is the file which contains the code of the task “http-server”

• esp_mad_task_measure.cpp: it is the file which contains the code of the task “measure”.

• esp_mad_task_vBattery.c : it is the file which contains the code of the task “task_vBattery”.

2.4.1 The measure task

The measure task is totally the same code than the measure task of the “Server”. No more words to add to this section
:-)

2.4.2 The esp_map_task_http_client

The “http-client” task start to initialize the board on wifi station.

2.4. Client software architecture 13

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

Then, the task checks periodically if the board is connected to the “Server” Board, and if the MPU6050 calibration is
finish testing the global Binit variable.

If these conditions are true, an HTTP POST with the angle measure by the board is send to the “Server” board.

2.4.3 The task_vBattery

The task_vBattery is totally the same code than the task_vBattery of the “server”. No more words to add to this section
also :-)

2.5 UX Design

The man-machine interface (MMI) of the project consists of a single HTML page (esp.html).

This page is built using the CSS framework bootstrap.

The page embeds an ajax script which periodically makes a HTTP GET request to the “Server” board which sends
back the different information to be displayed in the page. A second script makes it possible to carry out the change
of the chord of the control surfaces by a HTTP POST request. A third script is used to reset the Maximum(s) up and
down travel on the travel tab.

All the files for MMI are located in the directory GliderThrowMeter/Esp_mad_Server/main/WebsiteFiles

To connect to the page, it is first necessary to connect to the Wifi ad’hoc network of SSID ESP_MAD.

Then, just type the address 192.168.1.1 in the URL bar of your browser to connect to the main page of the project.

14 Chapter 2. Software Design

https://getbootstrap.com/

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

The main page of the project contains 4 tabs : Travel, Angle, Setting & Info.

The travel tab displayed the current travel of each sensors, and the Maximum up and down for each sensors stored
during the operation. The Reset Maximum(s) button is used to set to 0 these Maximum.

The “Angle” tab selection causes the page showing the deflection angles for both board to be displayed.

2.5. UX Design 15

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

The “Setting” tab will display the page that allows you to change the value of the control surface chord.

Note: In the current version, the project allows to control only one “Client” and both boards deal with the same chord
value.

To change the value of the chord, modify the value in the input field and validate with “Save change chord” button.

16 Chapter 2. Software Design

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

Finally, the “Info” tab display the voltage of the battery for both sensor.

2.5. UX Design 17

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

Let’s move on to the next chapter for the description of the board design.

18 Chapter 2. Software Design

CHAPTER 3

Hardware Design

The hardware design is based on the Adafruit HUZZAH32 ES32 feather open source board

The general architecture of the system is shown below.

19

https://github.com/adafruit/Adafruit-HUZZAH32-ESP32-Feather-PCB

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

The design is broken down into seven major sections :

• Power supply and filtering,

• Lipo charging,

• USB to serial converter + ESD protection,

• MPU6050,

• ESP-WROOM-32D & Autoreset,

• Reset circuit,

• Boot circuit,

• Adressable LED.

20 Chapter 3. Hardware Design

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

3.1 Power supply and filtering

The board can be powered from a 5V USB port (VBUS), or from a 3,7 V LIPO (or Li-Ion) 1S battery.

The battery is connected to a switch that allows the battery supply to be turned ON/OFF.

A DMG3415U (MOSFET transistor) is used to switch between VBUS and VBAT. When VBUS is not present, the
gate is pulled low, and the MOSFET shorts out the body diode, connecting VBAT directly to the LDO. When VBUS

3.1. Power supply and filtering 21

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

is greater than VBAT (that is our case if the board is connected by usb), the MOSFET is cut off and the body diode is
blocking, disconnecting VBAT from the circuit. EN pin of the DMG3415U is pulled low to permanently enable the
chip.

So with this switch, VBAT enters to the AP2112-3.3v LDO, if VBUS isn’t present, otherwise VBUS enters to the
AP2112-3.3.

3.2 Lipo charging

The lipo charging circuit is based on the MCP73831/2 microchip chip. This chip is a miniature single cell, fully
integrated Li-Ion, Li-Poly charge management controllers. Typical Application schematic is used.

Note: R8 resistor is used to set the current regulation. As we will used battery around 350 mA, we fix R8 to a current
regulation around 200 mA.

3.3 USB to serial converter + ESD protection

The USB serial converter is based on a CP2102N from Silicon Labs.

ESD protection is done using a SP0503BAHTG from littlefuse as recommended on the datasheet.

VEREGIN, VDD & VIO pins are tied to +3.3V, and also RSTB pin as recommended on the datasheet.

22 Chapter 3. Hardware Design

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

Two decoupling capacitors are also used.

To detect when the device is connected to a bus, which is defined as VIO – 0.6 V, a resistor divider on VBUS is
required to meet these specifications and ensure reliable device operation. In this case, the current limitation of the
resistor divider prevents high VBUS pin leakage current, even though the VIO + 2.5 V specification is not strictly met
while the device is not powered.

3.4 MPU6050

The circuit for the MPU6050 is a typical application scheme (see datasheet). SDA and SCL pins are connected to the
pins 22 & 23 of the ESP-WROOM-32D with two pullup resistors.

3.4. MPU6050 23

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

3.5 ESP-WROOM-32D & Autoreset

ESP-WROOM-32D chip, is the last ESP-WROOM-32 update from espressif. As our board is design with built-in
USB to Serial converter, we will use esptool.py to automatically reset the board into bootloader mode. esptool.py can
automatically enter the bootloader by using the RTS and DTR modem status line to toggle GPIO0 and EN automati-
cally.

EN pin forces the ESP32 chip to reset and the ESP will enter the serial bootloader when GPIO0 is held low on reset.
Otherwise it will run the program in flash.

Note: GPIO0 has an internal pullup resistor, so if it is left unconnected then it will pull high.

We use two PDTC114T (an NPN transistor with resistor) to control the ESP32 Boot mode Selection.

We have DTR controlling the base of a transistor whose collector is connected to RESET. We have RTS connected
to the base of a transistor whose collector is connected to GPIO0. Remember, there is an external pullup resistor on
RESET so default is HIGH.

When DTR is set HIGH and RTS is set LOW, this pulls RESET to LOW and GPIO0 is not controlled so it will
eventually take its strapped value of HIGH. This has the same result as assuming DTR connects to GPIO0 and RTS to
RESET. The processor is in the reset state.

When DTR is set LOW and RTS set HIGH, this disconnects RESET from the transistor and it gets pulled HIGH by
the external pullup resistor. At the same time, GPIO0 is pulled to LOW by the transistor (with its internal pullup still
engaged). This has the same result as assuming DTR connects to GPIO0 and RTS to RESET. The processor comes
out of reset state and reads the GPIO0 value to be LOW to start the bootloader.

24 Chapter 3. Hardware Design

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

Battery voltage is measure using a a voltage divider bridge connected to the IO35 pin.

Most of the other pin are not used, unlike IO22 & IO23, set respectively on SCL and SDA I2C signal to communicate
with the MPU6050.

3.6 Reset circuit

Enable (EN) is the 3.3V regulator’s enable pin. It’s pulled up, so connect to ground to disable the 3.3V regulator. So
we connect this pin a pushbutton to restart your ESP32.

As recommended by espressif a RC circuit with a resistor of 10k and a capacitor of 0,1uF is added between EN pin
and +3,3V to make automatic reset more reliable.

3.6. Reset circuit 25

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

3.7 Boot circuit

Boot switch is connected to GPIO.

26 Chapter 3. Hardware Design

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

Note: Some ESP32 based schematics mention a 0,1uF capacitor in parallel to the BOOT button to debounce. Do not
add this capacitor in this design or you will not be able to start the board without pressing the EN button.

3.8 Adressable LED

The adressable led is connected to the pin IO13 of the ESP-WROOM-32D. This led is used to display the status of the
MPU6050 calibration.

3.8. Adressable LED 27

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

3.9 PCB routing

The routed PCB (without ground plan) is shown below. The routing was done under EAGLE.

3D made with fusion 360 is shown below.

28 Chapter 3. Hardware Design

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

The finish board is shown below (quiet similar to the 3D model isn’t it :-)

3.10 Bill Of Material, Eagle Files & Gerber

BOM can be downloaded at this link bom.xlsx

3.10. Bill Of Material, Eagle Files & Gerber 29

https://github.com/adesandr/GliderThrow_Meter/blob/master/docs/_bom/bom.xlsx

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

Pick & Places file can be downloaded at this link Pick&Place file The format of this file is compatible with the
Smt Assistant utility from Alciom. SmtAssistant is a software designed by ALCIOM and helping to locate a part on a
printed circuit board, based on a bitmap of the PCB and Pick&Place file. SmtAssistant is a useful for manual prototype
assembly, inspection or board repair works. see here for more information and download.

Gerber files can be downloaded at this link ESP_MAD_Gerber.zip

Eagle files can be downloaded at this link eagle-files.zip

Let’s move on to the next chapter for the description of the system assembly and its use.

30 Chapter 3. Hardware Design

https://github.com/adesandr/GliderThrow_Meter/blob/master/docs/_pick%26place/PnP_ESP_MAD_front_forSmtAssistant.txt
https://www.alciom.com/en/smtassistant/
https://github.com/adesandr/GliderThrow_Meter/blob/master/docs/Gerber/ESP_MAD_Gerber.zip
https://github.com/adesandr/GliderThrow_Meter/blob/master/docs/Eagle/eagle-files.zip

CHAPTER 4

System Build

4.1 What do you need

Building the components for the project is extremely simple and requires only the following parts.

4.1.1 Stl files

All the stl files can be downloaded at this link zip file

31

https://github.com/adesandr/GliderThrow_Meter/blob/master/docs/_stl/ESP_MAD_stl.zip

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

4.1.2 Custom board

The custom board can be ordered from seed fusion for example (or other PCB services like Eurocircuit, jlcpcb, etc).
Gerber files can be downloaded on the hardware section. I have already made several PCBs at seed Fusion and the
service is fast and good. The price for 10 PCBs is around 15C + the shipping costs. When ordering the PCBs, don’t
forget to order the stencil to apply the solder paste.

Then you have to get the necessary components to assemble the PCB (the BOM is given in the hardware section,
and Mouser or Digikey is your friend), assemble the components either with a brussel clamp or using a Pick & Place
machine, then use a reflow oven to solder the components. If you assemble the board manually, first pass the board
with all the small components through the reflow oven and solder the ESP32 and the JST-PH connector on the bottom
of the board by hand.

Another solution if you don’t want to waste time manually assembling the board is to use the PCB Assembly service
from seed Fusion. Under this service, seed Fusion will source your components based on the BOM, manufacture your
PCB and do the assembly and soldering of the PCB. The disadvantage of this service is that you will not be able to
order less than 10 boards and it will cost you about 140C for these 10 boards + the shipping costs.

4.1.3 20 mm magnet

20 mm neodym magnet can be ordered at supermagnet.fr

4.1.4 Lipo 1S battery

A 350 mAh Lipo battery is recommended. 500 mAh Turnigy lipo from hobbyking is also a good choice.

With the turnigy 500 mAh battery, the autonomy of one device is around 3h of use.

4.2 How to build assemble one board

4.2.1 Step 1 : Mounting the magnet in the lower part of the case

Use some epoxy glue to secure the magnet.

32 Chapter 4. System Build

https://www.seeedstudio.com/fusion_pcb.html?gclid=Cj0KCQjw8IaGBhCHARIsAGIRRYrDiY9xl_DXK0TnbwQd7Kumivxzm0qlBc7xkKKEj7ldcP0cR-soNcoaAsP_EALw_wcB
https://www.supermagnete.fr/aimants-disques-neodyme/disque-magnetique-20mm-2mm_S-20-02-N
https://www.flashrc.com/tattu/22927-batterie_tattu_lipo_1s_37v_350mah_30c_prise_molex.html
https://hobbyking.com/fr_fr/turnigy-nano-tech-500mah-1s-25-50c-lipo-pack-losi-mini-compatible-1.html?queryID=d166af1407953f939983d0e383a2d794&objectID=79555&indexName=hbk_live_products_analyticsbattery

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

4.2.2 Step 2 : Mounting of the magnet in the base part of the peg

Use some glue also to secure the magnet.

4.2. How to build assemble one board 33

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

34 Chapter 4. System Build

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

4.2.3 Step 3 : Connect the Lipo battery on the custom board

4.2. How to build assemble one board 35

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

4.2.4 Step 4 : Install the lipo battery on the bottom case

4.2.5 Step 5 : Screw the custom board on the bottom case

Screw the board using only two screw.

36 Chapter 4. System Build

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

4.2.6 Step 6 : Put the top case on the bottom case

Two snap fit are provided to secure the top case and facilitate the disassembly

4.2. How to build assemble one board 37

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

4.2.7 Step 7 : Assembly of the storage box

The bottom and the top of the box are assembled with two hinges through which a 1.75 mm PETG wire is passed.

38 Chapter 4. System Build

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

The box is designed to receive a set of two devices.

4.2. How to build assemble one board 39

GliderThrow𝑀𝑒𝑡𝑒𝑟,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑉 1.2.0

4.3 How to use the devices

TBD.

40 Chapter 4. System Build

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

41

	Get Started
	Introduction
	Functional requirement
	What do you need
	First stage of prototyping : Basic connection diagram
	Second stage of prototyping

	Software Design
	Logical design
	Files organization
	Server software architecture
	Client software architecture
	UX Design

	Hardware Design
	Power supply and filtering
	Lipo charging
	USB to serial converter + ESD protection
	MPU6050
	ESP-WROOM-32D & Autoreset
	Reset circuit
	Boot circuit
	Adressable LED
	PCB routing
	Bill Of Material, Eagle Files & Gerber

	System Build
	What do you need
	How to build assemble one board
	How to use the devices

	Indices and tables

